Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci Health B ; 58(1): 1-9, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36573540

RESUMEN

The present study examined the effects of mesoporous silica nanoparticles (MSNs) on its adsorption capacity of aflatoxin B1 (AFB1). Moreover, the study evaluated the toxicity of MSNs with AFB1 using NIH3T3 cells and hemolysis test. The obtained MSNs were spherical, irregular-like in shape, having a mean size of 39.97 ± 7.85 nm and a BET surface area of 1195 m2/g. At 0.1 mg mL-1 concentration of MSN, the AFB1 adsorption capacity was 30%, which reached 70% when the MSN concentration increased to 2.0 mg mL-1. Our findings showed that AFB1 was adsorbed (∼67%) in the first few minutes on being in contact with MSNs, reaching an adsorption capacity of ∼70% after 15 min. Thereafter, the adsorption capacity remained constant in solution, demonstrating that the MSNs adsorbed toxins even beyond overnight. MSN treatment (0.5-2.0 mg mL-1) using NIH3T3 cells did not result in any reduction in cell viability. In addition, MSN treatment completely reversed the cytotoxic effect of AFB1 at all concentrations. Hemolysis test also revealed no hemolysis in MSNs evaluated alone and in those combined with AFB1. To the best of our knowledge, this study is the first to demonstrate that MSN can reduce cell toxicity produced by AFB1 due to its potential to adsorb mycotoxins.


Asunto(s)
Micotoxinas , Nanopartículas , Animales , Ratones , Aflatoxina B1 , Dióxido de Silicio , Células 3T3 NIH
2.
J Environ Sci Health B ; 57(3): 176-183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35188439

RESUMEN

Developing environmentally friendly alternative strategies to reduce the damage caused by fungi in agriculture has been widely investigated. In this study, we evaluated using mesoporous silica nanoparticles (MSNs) incorporated with zinc oxide (MSNs-ZnO) as a potential antifungal agent against Fusarium graminearum and Aspergillus flavus strains, as well as their antimycotoxin properties. The MSNs that synthesized and characterized could release abundant ZnO in the first 24 h. Subsequently, the ZnO release became slower, providing greater durability of the antifungal effect. Significant (P < 0.001) growth reductions in F. graminearum (81%) and A. flavus (65%) compared to the control were obtained at a high concentration of the MSNs-ZnO (1.0 mg mL-1). Moreover, the MSNs-ZnO treatment at a high concentration (1.0 mg mL-1) caused morphology alteration in both fungi, showing ruptures and deformations in the fungal hyphae, affecting their growth and toxin production. A significant reduction (P < 0.001) in the productions of deoxynivalenol (89%) and aflatoxin B1 (58%) by F. graminearum and A. flavus were also observed. These findings imply that using MSNs as the carriers of zinc compounds, such as ZnO, could be investigated as a safe alternative for effectively controlling toxigenic fungi in agriculture.


Asunto(s)
Fusarium , Nanopartículas , Óxido de Zinc , Antifúngicos/farmacología , Aspergillus flavus , Dióxido de Silicio/farmacología , Óxido de Zinc/farmacología
3.
Environ Sci Pollut Res Int ; 29(27): 41247-41260, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35089511

RESUMEN

Preservative treatments increase the durability of wood, and one of the alternative treatments involves the use of chromated copper arsenate (CCA). Due to the toxicity of CCA, the disposal of CCA-treated wood residues is problematic, and burning is considered to provide a solution. The ecotoxicological potential of ash can be high when these components are toxic and mutagenic. The aim of this study was to evaluate the toxicity and genotoxicity of bottom ash leachates originating from CCA-treated wood burning. Physical-chemical analysis of the leachates revealed that in treated wood ashes leachate (CCA-TWBAL), the contents of arsenic and chromium were 59.45 mg.L-1 and 54.28 mg.L-1, respectively. In untreated wood ashes leachate (UWBAL), these contents were 0.70 mg.L-1 and 0.30 mg.L-1, respectively. CCA-TWBAL caused significant toxicity in Lactuca sativa, Allium cepa, and microcrustacean Artemia spp. (LC50 = 12.12 mg.mL-1). Comet assay analyses using NIH3T3 cells revealed that concentrations ranging from 1.0 and 2.5 mg.mL-1 increase the damage frequency (DF) and damage index (DI). According to MTT assay results, CCA-TWBAL at concentrations as low as 1 mg.mL-1 caused a significant decrease in cellular viability. Hemolysis assay analyses suggest that the arsenic and chromium leachate contents are important for the ecotoxic, cytotoxic, and genotoxic effects of CCA-TWBAL.


Asunto(s)
Antineoplásicos , Arsénico , Eliminación de Residuos , Animales , Arseniatos/química , Arseniatos/toxicidad , Arsénico/análisis , Cromo/análisis , Cobre/química , Daño del ADN , Ratones , Células 3T3 NIH , Eliminación de Residuos/métodos , Madera/química
4.
J Biomed Mater Res B Appl Biomater ; 110(1): 67-78, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34121326

RESUMEN

Glass and bioactive glass-ceramic can be used in several applications. In bone growth where good bone/biomaterial adhesion was required, bioactive coatings for implants can improve bone formation. The glass and glass-ceramics of the LZS (Li2 O-ZrO2 -SiO2 ) system are very interesting because of their mechanical, electrical, and thermal properties. Very recently, their biological response in contact with human osteoblast has been evaluated. However, despite several initiatives, there are still no studies that systematically assess this system's bioactivity, dissolution, and cytotoxicity in vitro. This work aims to investigate the dissolution, bioactivity behavior, and cytotoxicity of LZS glass-ceramic. LZS glass-ceramics were produced from SiO2 , Li2 CO3, and ZrSiO4 by melting followed by quenching. The obtained glass frits were milled and uniaxially pressed and heat-treated at 800 and 900°C and submitted to physical-chemical, structural and mechanical characterization. Their dissolution behavior was studied in Tris-HCl, while bioactivity was performed in simulated solution body fluid (SBF). The cytotoxicity test was performed using glass-ceramic in direct contact with mesenchymal stem/stromal cells (SC) isolated from human exfoliated deciduous teeth. Structural and microstructural analyzes confirmed bioactivity. The results show that it was possible to produce bioactive glass-ceramic from LZS, proven by the formation of new calcium phosphate structures such as hydroxyapatite on the surface of the samples after exposure to SBF. The SC viability test performed indicated that the materials were not cytotoxic at 0.25, 0.5, and 1.0 mg/ml. The glass-ceramic system under study is very promising for a medicinal application that requires bioactivity and/or biocompatibility for bone regeneration.


Asunto(s)
Cerámica , Dióxido de Silicio , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Cerámica/química , Cerámica/farmacología , Vidrio/química , Humanos , Dióxido de Silicio/química , Solubilidad
5.
Int J Food Microbiol ; 270: 5-13, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29428818

RESUMEN

Rice (Oryza sativa L.) is one of the most important food crops worldwide. In Brazil, the southern region is the area with the highest production of rice in the country and also has a high average daily intake of rice by the population. The mycoflora, mainly toxigenic Aspergillus and Fusarium species, the presence of AFB1, DON and ZEA in rice grains, as well as daily intake estimates for the Southern Brazilian population were evaluated. The rice grain samples were collected during the 2017 crop from different harvest periods. According to the mycological tests, the samples presented a high count of fungal colonies in the pre and post-harvest, where the incidence of the F. graminearum species complex (52%) was significantly predominant. This group can be responsible for ZEA production, as found in this study in parboiled rice, mainly because most of the isolated strains were producers of high ZEA levels in the pre-harvest (77%) and post-harvest after natural (79%) and artificial (75%) drying of the rice. Only ZEA showed significant results in the rice grain analyzed (60%) at levels of 90.56 to 126.31 µg/kg, where 36% of the samples were significantly higher than the current maximum limit stipulated in Brazilian regulations and by the European Commission. Despite this, the dietary exposure of ZEA estimated for the southern Brazilian population was below the provisional maximum tolerable daily intake level of 0.5 µg/kg body weight/day set at international regulations.


Asunto(s)
Aspergillus/metabolismo , Grano Comestible/microbiología , Fusarium/metabolismo , Micotoxinas/análisis , Oryza/microbiología , Tricotecenos/análisis , Zearalenona/análisis , Aspergillus/aislamiento & purificación , Brasil , Productos Agrícolas/microbiología , Grano Comestible/química , Contaminación de Alimentos/análisis , Fusarium/aislamiento & purificación , Incidencia
6.
J Environ Sci Health B ; 53(3): 184-190, 2018 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-29286883

RESUMEN

Zeolites are often used as adsorbents materials and their loaded cations can be exchanged with metal ions in order to add antimicrobial properties. The aim of this study was to use the 4A zeolite and its derived ion-exchanged forms with Zn2+, Li+, Cu2+ and Co2+ in order to evaluate their antifungal properties against Fusarium graminearum, including their capacity in terms of metal ions release, conidia germination and the deoxynivalenol (DON) adsorption. The zeolites ion-exchanged with Li+, Cu2+, and Co2+ showed an excellent antifungal activity against F. graminearum, using an agar diffusion method, with a zone of inhibition observed around the samples of 45.3 ± 0.6 mm, 25.7 ± 1.5 mm, and 24.7 ± 0.6 mm, respectively. Similar results using agar dilution method were found showing significant growth inhibition of F. graminearum for ion-exchanged zeolites with Zn2+, Li+, Cu2+, and Co2+. The fungi growth inhibition decreased as zeolite-Cu2+>zeolite-Li+>zeolite-Co2+>zeolite-Zn2+. In addition, the conidia germination was strongly affected by ion-exchanged zeolites. With regard to adsorption capacity, results indicate that only zeolite-Li+ were capable of DON adsorption significantly (P < 0.001) with 37% at 2 mg mL-1 concentration. The antifungal effects of the ion-exchanged zeolites can be ascribed to the interactions of the metal ions released from the zeolite structure, especially for zeolite-Li+, which showed to be a promising agent against F. graminearum and its toxin.


Asunto(s)
Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Tricotecenos/química , Zeolitas/química , Zeolitas/farmacología , Adsorción , Evaluación Preclínica de Medicamentos/métodos , Fungicidas Industriales/química , Fusarium/crecimiento & desarrollo , Litio/química , Litio/farmacología , Metales/química
7.
Ecotoxicol Environ Saf ; 143: 259-265, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28551583

RESUMEN

Red ceramic industry in southern Brazil commonly uses wood biomass as furnace fuel generating great amounts of gas emissions and ash. To avoid their impact on atmospheric environment, wet scrubbing is currently being applied in several plants. However, the water leachate formed could be potentially toxic and not managed as a common water-based effluent, since the resulting wastewater could carry many toxic compounds derived from wood pyrolysis. There is a lack of studies regarding this kind of effluent obtained specifically and strictly from wooden-based biomass furnaces. Therefore, we conducted an evaluation of toxic and genotoxic potentials of this particular type of wet gas scrubber effluent. Physical-chemical analysis showed high contents of several contaminants, including phenols, sulphates and ammoniacal nitrogen, as well as the total and suspended solids. The effluent cause significant toxicity towards microcrustacean Artemia sp. (LC50 = 34.4%) and Daphnia magna (Toxicity Factor = 6 on average) and to higher plants (Lactuca sativa L. and Allium cepa L.) with acute and sub-acute effects in several parameters. Besides, using plasmid DNA, significant damage was observed in concentrations 12.5% and higher. In cellular DNA, concentrations starting from 12.5% and 6.25% showed significant increase in Damage Index (DI) and Damage Frequency (DF), respectively. The results altogether suggest that the effluent components, such phenols, produced by wood combustion can be volatilized, water scrubbed, resulting in a toxic and genotoxic effluent which could contaminate the environment.


Asunto(s)
Industria de la Construcción , Daño del ADN , Mutágenos/toxicidad , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad , Madera/química , Animales , Artemia/efectos de los fármacos , Artemia/genética , Brasil , Cerámica , Materiales de Construcción , Daphnia/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Lactuca/efectos de los fármacos , Lactuca/genética , Cebollas/efectos de los fármacos , Cebollas/genética
8.
Mater Sci Eng C Mater Biol Appl ; 43: 109-16, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25175195

RESUMEN

The use of clays for therapeutic practice is widespread in almost all regions of the world. In this study the physicochemical and microbiological healing characteristics of a clay from Ocara, Brazil, popularly used for therapeutic uses, were analyzed. The presence of Ca, Mg, Al, Fe, and Si was observed, which initially indicated that the clay had potential for therapeutic use. The average particle size of the clay (26.3 µm) can induce the microcirculation of the skin and the XRD analysis shows that the clay is formed by kaolinite and illite, a swelling clay. During the microbiological evaluation there was the need to sterilize the clay for later incorporation into the pharmaceutical formula. The accelerated stability test at 50°C for 3 months has showed that the pharmaceutical formula remained stable with a shelf life of two years. After the stability test the wound-healing capacity of the formulation in rats was evaluated. It was observed that the treatment made with the formulation containing the Ocara clay showed the best results since the formula allowed greater formation of collagen fibers and consequent regeneration of the deep dermis after seven days of treatment and reepithelialization and continuous formation of granulation tissue at the 14th day.


Asunto(s)
Silicatos de Aluminio , Piel/patología , Cicatrización de Heridas , Animales , Arcilla , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Ratas , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
9.
Waste Manag ; 34(8): 1495-500, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24582355

RESUMEN

The creation of metal parts via casting uses molds that are generally made from sand and phenolic resin. The waste generated after the casting process is called waste foundry sand (WFS). Depending on the mold composition and the casting process, WFS can contain substances that prevent its direct emission to the environment. In Brazil, this waste is classified according to the Standard ABNT NBR 10004:2004 as a waste Class II (Non-Inert). The recycling of this waste is limited because its characteristics change significantly after use. Although the use (or reuse) of this byproduct in civil construction is a technically feasible alternative, its effects must be evaluated, especially from mechanical and environmental points of view. Thus, the objective of this study is to investigate the effect of the use of WFS in the manufacture of cement artifacts, such as masonry blocks for walls, structural masonry blocks, and paving blocks. Blocks containing different concentrations of WFS (up to 75% by weight) were produced and evaluated using compressive strength tests (35 MPa at 28 days) and toxicity tests on Daphnia magna, Allium cepa (onion root), and Eisenia foetida (earthworm). The results showed that there was not a considerable reduction in the compressive strength, with values of 35 ± 2 MPa at 28 days. The toxicity study with the material obtained from leaching did not significantly interfere with the development of D. magna and E. foetida, but the growth of the A. cepa species was reduced. The study showed that the use of this waste in the production of concrete blocks is feasible from both mechanical and environmental points of view.


Asunto(s)
Materiales de Construcción , Eliminación de Residuos/métodos , Dióxido de Silicio/química , Suelo , Aleaciones , Animales , Fuerza Compresiva , Conservación de los Recursos Naturales/métodos , Daphnia , Residuos Industriales/análisis , Metales/química , Oligoquetos , Cebollas , Compuestos Orgánicos , Tamaño de la Partícula , Fenol/química , Raíces de Plantas , Presión , Reciclaje , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Factores de Tiempo , Pruebas de Toxicidad
10.
Environ Sci Pollut Res Int ; 19(6): 2107-14, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22227807

RESUMEN

INTRODUCTION: Flowing of the acid mine drainage may contaminate the adjacent water bodies causing substantial changes in the aquatic ecosystem. This aspect is the most relevant problem in the southern of Santa Catarina once the contaminated areas are inserted in the watershed of the Araranguá, Urussanga, and Tubarão rivers, increasing the need for recovery studies. These areas are between Criciúma, Içara, Urussanga, Siderópolis, Lauro Müller, Orleans, and Alfredo Wagner towns where a conservation unit exist called the Environmental Preservation Area of Baleia Franca. Aiming to compare the kinetics of the ash derived from burning coal and to neutralize acid mine drainage, different neutralizer, limestone, fly, and bottom ash, was mounted on a pilot scale experiment. DISCUSSION: The transport parameters showed the same order of infiltration and dispersion: fly ash < bottom ash < limestone. The order of measured alkalinity was: limestone < fly ash < bottom ash, with pH values of 9.34, 12.07, and 12.25, respectively. The limestone kinetics of acidic drainage neutralization was first order with reaction rate constant k = 0.0963 min(-1), bottom ash was 3/4 with k = 0.0723 mol(1/4) L(-1/4) min(-1), and the fly ash had higher order kinetics, 4/3, with reaction rate constant k = 27.122 L(1/3) mol(-1/3) min(-1). However, by mathematical modeling, it was found that due to a combination of transport and kinetics, only limestone treatment reached a pH above 6 within 5 years, corresponding to the ideal as planned.


Asunto(s)
Minas de Carbón , Restauración y Remediación Ambiental/métodos , Brasil , Ceniza del Carbón/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...